Appendix to Approach 1: Series Solution Method. $\frac{\text{Step 1:}}{\sqrt{x^2}} + \frac{2m}{\hbar^2} (E - \frac{1}{2} m\omega_o^2 x^2) \psi = 0$ $\binom{1}{1}$ becomes $\frac{d^2\psi}{dy^2} + (\alpha - y^2)\psi = 0$ (2) where $y = \sqrt{\frac{m\omega_o}{\hbar}} x$ and $\alpha = \frac{E}{(\frac{1}{2}\hbar\omega_o)}$ Problem becomes: Solve for ψ (y) and x together with B.C.'s Well-behaved ψ

 Π -App \perp

Dome steps will be filled in

-App2 $Step 2: Consider Limiting behavior for $y \rightarrow \pm \infty$ (i.e. $x \rightarrow \pm \infty$)$ Eg.(1) becomes $\frac{d^2\psi}{dy^2} - y^2\psi = 0$ $(for y \rightarrow \pm \infty$ behavior.) $\psi(y) \sim e^{\pm \frac{1}{2}y^2}$ works $\frac{\partial^2 C}{\partial x^2}$ d $\frac{1}{2}$ $\sim \pm y e^{\pm \frac{1}{2}y^2}$, $\frac{\partial^2 y}{\partial y^2} \sim y^2 e^{\pm \frac{1}{2}y^2} + e^{\pm \frac{1}{2}y^2}$ $\int \frac{1}{y^2} e^{\frac{1}{2}y^2} (y \to \pm \infty)$ \sim ig² ψ ok! But B.C. requires $\psi \rightarrow 0$ as $y \rightarrow \pm \infty$. $\int \psi(y) \sim e^{-\frac{1}{2}y^2}$ [$\psi(y) \sim e^{+\frac{1}{2}y^2}$ fails to satisfy B.C.s] · In general, for $y \rightarrow \pm \infty$ (large $|y|$) $\psi(y) \sim y^{m} \cdot e^{-\frac{1}{2}y^{2}}$ $[Check: Ex]$

Step 3:	Consider $y \rightarrow 0$ behavior $(x \rightarrow 0$ behavior)	Example 2.
$E_3(1)$ becomes $\frac{d^2y}{dy^2} + \alpha y^2 = 0$ (xaw thus before!)		
Solution: $\psi(y) = A \cos \sqrt{x} y + B \sin \sqrt{x} y$ (Check: Ex)		
$\sim A[1 + O(y^2)] + B[\sqrt{x} y + O(y^3)]$ (by a small argument)		
$\sim A + B'y + O(y^2) + \cdots$		
$\sim a \text{ series in } y$		
Putting. Step 2 and Step 3 together of the form:		
ω is of the form:		
ω is the sum of the form:		

 \blacksquare

 $\bar{\beta}$

 $\overline{}$

Step 4:	Problem becomes that of solving $H(y)$ in Eq.(3)	
What is the equation that $H(y)$ satisfies?		
Subd. (3)	$\psi = H(y) e^{-\frac{1}{2}y^2}$ into $\frac{d^2\psi}{dy^2} + (\alpha - y^2)\psi = 0$ (2)	
gives	$\frac{d^2H(y)}{dy^2} - 2y \frac{dH(y)}{dy} + (\alpha - 1)H(y) = 0$	(4)
Solving 713E \Rightarrow Solving Eq.(2) \Rightarrow Solving Eq.(4)		
Solving for Solving for Solving for No.	Solving for No.	
$\psi(x) \Leftrightarrow E$	$\psi(y) \Leftrightarrow \alpha$	$H(y) \Leftrightarrow \alpha$
Key Point: $\psi(x)$ are $\psi(y)$ must be well-beared.		

Step 5 : Solve Eg. (4) using method of Series Solution
\nWrite H(y) =
$$
\sum_{n=0}^{\infty} a_n y^n
$$
 (5) (Try a series solution) [whether it
\nmodel to find
\n $\frac{Cdeficients}{An}$ Meaning: $\sum_{n=0}^{\infty}$
\nSubstituting Eg. (5) into Eg. (4) (Ex.) shows that the coefficients
\nare related by
\n $\frac{a_{n+2}}{(n+1)(n+2)}$ (6) Recursively
\nMeaning: If a, is fixed, can get a₂, a₄, ..., by Eq. (6)
\nH a, is fixed, can get a₃, a₅, ..., by Eq. (6)
\nReason: H(y) is governed by Eq. (4), which is in turn TISE for oscillators.

 \sim

 \sim

Step b : Test behavior of H(y) against some known behavior	$\mathbb{Z}-4\gamma b$
• Consider n→∞ limit : $\frac{Q_{n+2}}{d_n} \rightarrow \frac{2n}{n^2} \rightarrow \frac{2}{n}$ (7)	
• Is it behavior of x ? N0! It is bad because this is of the same behavior of the coefficients in $e^{+}y^2$	
• Check: $e^{+}y^2 = \sum_{n=0}^{\infty} \frac{y^{2n}}{n!} = \sum_{p=0,2,4}^{\infty} \frac{y^p}{p!} = \cdots + \frac{1}{\frac{p}{2}!}y^p + \frac{1}{\frac{p+2}{2}!}y^{p+2} + \cdots$	
• $\frac{Q_{p+2}}{d_p} = \frac{4}{(2p)!} \cdot \frac{2}{(2)} = \frac{4}{(2p)!} = \frac{2}{7}$ same as (7)	
• For H(y) = $\sum_{n=0}^{\infty} a_n y^n$ satisfying Eq.(4) [TISE], it is of the same behavior as $e^{+}y^2$ [if: (n→∞) H(y) is really a series with n→∞ terms.	

But this is
$$
\frac{fxd!}{d}
$$
 :: $\sqrt{f(y)} = H(y) e^{-\frac{1}{2}y^2} \sim e^{-\frac{1}{2}y^2} \sim e^{-\frac{1}{2}y^2}$
\n $23 \times y \rightarrow \pm \infty$, $\sqrt{f(y)} \rightarrow \infty$ (diverges as $y \rightarrow \pm \infty$)
\n $24 \times y \rightarrow \pm \infty$, $\sqrt{f(y)} \rightarrow \infty$ (diverges as $y \rightarrow \pm \infty$)
\n $25 \times y \rightarrow \pm \infty$
\n $26 \times y \rightarrow \pm \infty$
\n $27 \times 10 \times 10^2$
\n $28 \times y \rightarrow \pm \infty$, 29×10^2
\n 29×10^2 J = $(a_0 + a_2y^2 + a_4y^4 + \cdots) + (a_1y + a_3y^3 + a_5y^5 + \cdots)$
\n $= a_0(1 + a_2y^2 + a_4y^4 + \cdots) + a_1(y + a_3y^3 + a_5y^5 + \cdots)$
\n $= a_0(1 + a_2y^2 + a_4y^4 + \cdots) + a_1(y + a_3y^3 + a_5y^5 + \cdots)$
\n $= a_0(1 + a_2y^2 + a_4y^4 + \cdots) + a_1(y + a_3y^3 + a_5y^5 + \cdots)$
\n $= a_0(1 + a_2y^2 + a_4y^4 + \cdots) + a_1(y + a_3y^3 + a_5y^5 + \cdots)$
\n $= a_0(1 + a_2y^2 + a_4y^4 + \cdots) + a_1(y + a_3y^3 + a_5y^5 + \cdots)$
\n $= a_0(1 + a_2y^2 + a_4y^4 + \cdots) + a_1(y + a_3y^3 + a_5y^5 + \cdots)$
\n $= a_0(1 + a_2y^2 + a_4y^4 + \cdots) + a_1(y + a_3y^3 + a_5y^5 + \cdots)$
\n $= a_0(1 + a_$

: We want to terminate the series. How?

$$
I_{M}pect \frac{a_{n+2}}{a_n} = \frac{2n+1-\alpha}{(n+1)(n+2)}
$$
 (6) $n=0,1,2,\cdots$

Somehow, if
$$
a_{n+2} = 0
$$
, then a_{n+4} , a_{n+6} , $\cdots = 0$
\n \Rightarrow either $u_1(y)$ or $u_2(y)$ terminates (becomes a polynomial)
\nThis termination occurs when

$$
2n+1-\alpha=0 \Rightarrow \alpha=\frac{E}{(\frac{1}{2}\hbar\omega_0)}=2n+1 \qquad (n=0,1,2,\bullet\bullet)
$$

 \mathcal{I} -App 8

$$
\Rightarrow \left[\text{Energy Eigenvalues (allowed energies)} are \nE_n = (n + \frac{1}{2})\hbar\omega_o = \frac{1}{2}\hbar\omega_o + n\hbar\omega_o, n = 0.1, 2, \cdots \right]
$$

Again, it is B.C. (well-behaved ψ) that selects allowed energies.

 $\psi_n \sim H(y) e^{-\frac{1}{2}y^2}$ $E_n = (n + \frac{1}{2})\hbar \omega_0$ II-App9 Energy Eigenfunctions: $H(y) = a_0 u_1(y) +$
<u>Even</u> powers of y $a_1 u_2(y)$ odd powers of y n is odd <u>n is even</u> $a_0u_1(y)$ + $a_1u_2(y)$ a_{o} $u_{l}(y)$ $+$ $a_1u_2(y)$ infinite series (bad) polynomial (OK) polynomial infinite series (bad)
(OK)
Pick $Q_i = 0$ Pick $a_0 = 0$
 \Rightarrow kill even part \Rightarrow OK ⇒ kill odd part
⇒ OK $H_n(y)$ is an odd function of y Hn(y) is an even function (hence $x)$ and the highest power term in polynomial is y" of y (hence x) and the highest power term in polynomial is yn H_1 , H_3 , H_5 , $\cdot \cdot \cdot$ odd Ho, H_2 , H_4 , H_6 on 2 even ψ , ψ_3 , ψ_5 , ...) functions ψ , ψ , ψ , ψ , ψ , f functions

$$
\therefore \quad \boxed{\psi_n(y) = A_n + \ln(y) e^{-\frac{1}{2}y^2}} \qquad \qquad y = \boxed{\frac{m\omega}{h}} \approx
$$
\n
$$
\ln(xy) = \text{Hermite} \quad \text{Poynomial of order } n
$$
\n
$$
\frac{By_convention}{then \quad a_{n-2}, \quad a_{n-4}, \quad \cdots \quad \text{by recursive relation}}
$$
\n
$$
H_0 = 1 \qquad H_1(y) = 2y \qquad H_2(y) = 4y^2 - 2 \qquad H_3(y) = 8y^3 - 12y, \quad H_4(y) = 16y^4 - 48y^2 + 12
$$
\n
$$
\cdots
$$
\n
$$
\frac{1}{b_n} = \left(\frac{m\omega}{\pi h}\right)^{a_n} \quad \text{for} \quad \text{eigenenergy} \quad \text{En is}
$$
\n
$$
\frac{1}{b_n} = \left(\frac{m\omega}{\pi h}\right)^{a_n} \quad \frac{1}{\sqrt{2^n n!}} \quad \text{H}_n(y) = \frac{1}{2}y^2 \qquad \text{where } y = \boxed{\frac{m\omega}{h}} \approx
$$
\n
$$
\frac{1}{b_n} = (n + \frac{1}{2})\pi \omega_{\alpha}, \quad n = 0, 1, 2, \cdots
$$
\n
$$
\frac{1}{b_n} = \frac{1}{2} \pi \frac{1}{2} \qquad \text{for} \quad n = 0, 1, 2, \cdots
$$
\n
$$
\frac{1}{b_n} = \frac{1}{2} \pi \frac{1}{2} \qquad \text{for} \quad n = 0, 1, 2, \cdots
$$
\n
$$
\frac{1}{b_n} = \frac{1}{2} \pi \frac{1}{2} \qquad \text{for} \quad n = 0, 1, 2, \cdots
$$

 $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$ and $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$ and $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$

 $\bar{\gamma}$

Explicit form of a few $\psi_n(x)$'s (Just for fun) (From Eg. (8)) $\mathcal{V}_3(x) = \left(\frac{1}{9\pi}\right)^{1/4} \left(\frac{m\omega_0}{\hbar}\right)^{3/4} \left[\frac{2m\omega_0}{\hbar}\right] x^3 - 3x \left[\left(\frac{-m\omega_0}{2\hbar}\right)x^2\right]$ $\psi_2(x) = \left(\frac{m\omega_0}{4\pi\hbar}\right)^{1/4} \left[2\frac{m\omega_0}{4}x^2 - 1\right]e^{-\frac{m\omega_0}{2\hbar}x^2}$ $V_1(x) = \left(\frac{4}{\pi}\right)^{1/4} \left(\frac{m\omega_0}{\hbar}\right)^{3/4} \propto e^{-\frac{m\omega_0}{2\hbar}x^2}$ $\mathcal{V}_{o}(x) = \left(\frac{m\omega_{o}}{\gamma + h}\right)^{1/4} e^{-\frac{m\omega_{o}x^{2}}{2h}}$ (Gaussian function)

Optional: 1-page Summay on the Math. Solving AND SUUATE					
Solution of Schrödinger's Equation for the Hammeric Section.					
\n $\frac{\left[\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + U(x)\right] \psi(x) = E\psi(x)}{\frac{1}{2m}\frac{\partial^2}{\partial x^2} + U(x)\right] \psi(x) = E\psi(x)}$ \n	1D time-independent Schrödinger Equation				
\n $\frac{\partial^2 \psi}{\partial x^2} + \frac{2m}{\sqrt{2}} (E - \frac{1}{2}m\omega_x^2 x^2) \psi = 0$ \n	The equation to be solved for $\frac{1}{2} \frac{\partial^2 \psi}{\partial x^2} + (\alpha - \frac{1}{2}m\omega_x^2 x^2) \psi = 0$ \n	The solution to be solved for $\frac{1}{2} \frac{\partial^2 \psi}{\partial x^2} + (\alpha - \frac{1}{2}m\omega_x^2 x^2) \psi = 0$ \n	The following equation is dihposicities form $\frac{\partial^2 \psi}{\partial y^2} + (\alpha - \frac{1}{2}m\omega_x^2 x^2) \psi = 0$ \n	The following equation is dihposicities from $\frac{\partial^2 \psi}{\partial y^2} + (\alpha - \frac{1}{2}m\omega_x^2 x^2) \psi = 0$ \n	The solution for α is replaced by the solution for $\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial$

 \sim

Back to II - B11

 $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$ and $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$

 $\label{eq:2.1} \mathcal{L}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})) = \mathcal{L}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})) = \mathcal{L}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})) = \mathcal{L}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})) = \mathcal{L}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})) = \mathcal{L}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})) = \mathcal{L}(\$

 $\frac{1}{2}$